Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The ionization of CO, CO+, and CO2+ are quantified in an ultrafast, strong laser field. Measurements were performed over the intensity range from 1014 to 1017 W cm−2. Across this span, the intensity-dependent ionization yields were quantified over eight orders of magnitude in the dynamic range. Both sequential and (e, 2e) nonsequential ionization processes were observed. We calculate the electron states for CO and its molecular ions interacting with a strong laser field using a traditional field-free approach, the single active electron approximation, and present the results for the all-electron interaction of CO with the laser field. By comparing the calculated ionization with the experimental yields, we determined that the electron wave function polarization and Stark shifts were accurately treated with an all-electron Hartree–Fock calculation. The calculated field–molecule interaction included the core electron polarizability, which is not captured using field-free or frozen-core single-electron approximation.more » « less
-
Free, publicly-accessible full text available February 11, 2026
-
A molecular crystal structure prediction (CSP) protocol used in the seventh blind test is presented. The seventh blind test was divided into two stages and included seven targets, with crystals containing from one to three molecules in asymmetric units, monomers built of up to 100 atoms, and all targets containing monomers with flexible degrees of freedom. Some targets were cocrystals and one target was a salt. These diverse targets were treated using a CSP protocol starting from finding the global and local minima conformations of the target molecule. Subsequently, anab initiotwo-body rigid-monomer six-dimensional force field (aiFF) was developed for the global-minimum conformer. These aiFFs were then used in CSPs consisting of packing and lattice-energy minimization stages. Flexible-monomer CSPs were used for some targets. To describe the intramonomer FF, either generic empirical FFs or reparametrized FFs of this type were used, with some parameters fitted toab initioenergies of monomers in the latter case. A novel packing procedure was applied for two targets in stage 1. The success rate in the structure generation stage was 15% in submission phase and 54% in post-submission phase, while the corresponding values in the structure rating stage were 33% and 89%. We conclude that the inexpensive conformer-based approach with rigid-monomer CSPs can be recommended for investigations of crystals with flexible monomers. An advantage of this protocol is that it is fully based on first-principles quantum mechanics and generates tailor-made FFs suitable for use in subsequent molecular dynamics simulations investigating temperature-dependent effects. However, empirical intramonomer FFs reparametrized usingab initiodata are not yet adequate for CSPs.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Measurements of rovibrational spectra of clusters provide physical insight only if spectral lines can be assigned to pairs of quantum states, and further insight is obtained if one can deduce the quantitative energy-level pattern. Both steps can be so difficult that some measured spectra remain unassigned, one example isorthoH2–CO. To extend the scope of spectroscopic insights, we propose to use theoretical information in interpretation of spectra. We first performed high accuracy, full-dimensional calculations of theorthoH2–CO spectrum, at the highest practically achievable levels of electronic structure theory and quantum nuclear dynamics. Then, an iterative, theory-guided method developed here allowed us to fully interpret the spectrum oforthoH2–CO, extending the range of van der Waals clusters for which spectroscopy can provide physical insights.more » « less
-
Abstract An inexpensive and reliable method for molecular crystal structure predictions (CSPs) has been developed. The new CSP protocol starts from a two-dimensional graph of crystal’s monomer(s) and utilizes no experimental information. Using results of quantum mechanical calculations for molecular dimers, an accurate two-body, rigid-monomer ab initio-based force field (aiFF) for the crystal is developed. Since CSPs with aiFFs are essentially as expensive as with empirical FFs, tens of thousands of plausible polymorphs generated by the crystal packing procedures can be optimized. Here we show the robustness of this protocol which found the experimental crystal within the 20 most stable predicted polymorphs for each of the 15 investigated molecules. The ranking was further refined by performing periodic density-functional theory (DFT) plus dispersion correction (pDFT+D) calculations for these 20 top-ranked polymorphs, resulting in the experimental crystal ranked as number one for all the systems studied (and the second polymorph, if known, ranked in the top few). Alternatively, the polymorphs generated can be used to improve aiFFs, which also leads to rank one predictions. The proposed CSP protocol should result in aiFFs replacing empirical FFs in CSP research.more » « less
-
Hydrate formation is often unavoidable during crystallization, leading to performance degradation of pharmaceuticals and energetics. In some cases, water molecules trapped within crystal lattices can be substituted for hydrogen peroxide, improving the solubility of drugs and detonation performance of explosives. The present work compares hydrates and hydrogen peroxide solvates in two ways: (1) analyzing structural motifs present in crystal structures accessed from the Cambridge Structural Database and (2) developing potential energy surfaces for water and hydrogen peroxide interacting with functional groups of interest at geometries relevant to the solid state. By elucidating fundamental differences in local interactions that can be formed with molecules of hydrogen peroxide and/or water, the analyses presented here provide a foundation for the design and selection of candidate molecules for the formation of hydrogen peroxide solvates.more » « less
-
Recent advances regarding the interplay between ab initio calculations and metrology are reviewed, with particular emphasis on gas-based techniques used for temperature and pressure measurements. Since roughly 2010, several thermophysical quantities – in particular, virial and transport coefficients – can be computed from first principles without uncontrolled approximations and with rigorously propagated uncertainties. In the case of helium, computational results have accuracies that exceed the best experimental data by at least one order of magnitude and are suitable to be used in primary metrology. The availability of ab initio virial and transport coefficients contributed to the recent SI definition of temperature by facilitating measurements of the Boltzmann constant with unprecedented accuracy. Presently, they enable the development of primary standards of thermodynamic temperature in the range 2.5–552 K and pressure up to 7 MPa using acoustic gas thermometry, dielectric constant gas thermometry, and refractive index gas thermometry. These approaches will be reviewed, highlighting the effect of first-principles data on their accuracy. The recent advances in electronic structure calculations that enabled highly accurate solutions for the many-body interaction potentials and polarizabilities of atoms – particularly helium – will be described, together with the subsequent computational methods, most often based on quantum statistical mechanics and its path-integral formulation, that provide thermophysical properties and their uncertainties. Similar approaches for molecular systems, and their applications, are briefly discussed. Current limitations and expected future lines of research are assessed.more » « less
-
Abstract In the 1980s, Nelson, Fraser, and Klemperer (NFK) published an experimentally derived structure of the ammonia dimer dramatically different from the structure determined computationally, which led these authors to the question “Does ammonia hydrogen bond?. This question has not yet been answered satisfactorily. To answer it, we have developed an ab initio potential energy surface (PES) for this dimer at the limits of the current computational capabilities and performed essentially exact six-dimensional calculations of the vibration-rotation-tunneling (VRT) spectra of NH3-NH3and ND3-ND3, obtaining an unprecedented agreement with experimental spectra. In agreement with other recent electronic structure calculations, the global minimum on the PES is in a substantially bent hydrogen-bonded configuration. Since the bottom of the PES is exceptionally flat, the dimer is extremely fluxional and the probability of finding it in configurations that are not hydrogen bonded is high. Nevertheless, the probability of hydrogen-bonded configurations is large enough to consider the ammonia dimer to be hydrogen bonded. We also show that NFK’s inference that the ammonia dimer is nearly rigid actually results from unusual cancellations between quantum effects that generate differences in spectra of different isotopologues.more » « less
An official website of the United States government
